Maps to Spaces in the Genus of Infinite Quaternionic Projective Space

نویسنده

  • DONALD YAU
چکیده

Spaces in the genus of infinite quaternionic projective space which admit essential maps from infinite complex projective space are classified. In these cases the sets of homotopy classes of maps are described explicitly. These results strengthen the classical theorem of McGibbon and Rector on maximal torus admissibility for spaces in the genus of infinite quaternionic projective space. An interpretation of these results in the context of Adams-Wilkerson embedding in integral K-theory is also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on the Genus of the Infinite Quaternionic Projective Space

It is shown that all but at most countably many spaces in the genus of HP∞, the infinite quaternionic projective space, do not admit any essential maps from CP∞, the infinite complex projective space. This strengthens a theorem of McGibbon and Rector which states that among the uncountably many homotopy types in its genus, HP∞ is the only one which admits a maximal torus.

متن کامل

Nonlinear Dirac Operator and Quaternionic Analysis

Properties of the Cauchy–Riemann–Fueter equation for maps between quaternionic manifolds are studied. Spaces of solutions in case of maps from a K3–surface to the cotangent bundle of a complex projective space are computed. A relationship between harmonic spinors of a generalized nonlinear Dirac operator and solutions of the Cauchy– Riemann–Fueter equation are established.

متن کامل

The Cohomology Algebra of Certain Loop Spaces

The purpose of this paper1 is to determine the cohomology algebra of a loop space over a topological space whose cohomology algebra is a truncated polynomial algebra generated by an element of even degree. As special cases we obtain the well-known results when the base space has as cohomology algebra an exterior algebra (the base space an even dimensional sphere) or a polynomial algebra (the ba...

متن کامل

Minimizing coincidence numbers of maps into projective spaces

In this paper we continue to study (‘strong’) Nielsen coincidence numbers (which were introduced recently for pairs of maps between manifolds of arbitrary dimensions) and the corresponding minimum numbers of coincidence points and pathcomponents. We explore compatibilities with fibrations and, more specifically, with covering maps, paying special attention to selfcoincidence questions. As a sam...

متن کامل

Special Bertrand Curves in semi-Euclidean space E4^2 and their Characterizations

In [14] Matsuda and Yorozu.explained that there is no special Bertrand curves in Eⁿ and they new kind of Bertrand curves called (1,3)-type Bertrand curves Euclidean space. In this paper , by using the similar methods given by Matsuda and Yorozu [14], we obtain that bitorsion of the quaternionic curve is not equal to zero in semi-Euclidean space E4^2. Obtain (N,B2) type quaternionic Bertrand cur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002